Close
(0) items
You have no items in your shopping cart.
Browse
    Filters
    Preferences
    Search

    Projective Geometry: Creative Polarities in Space and Time

    £25.00
    ISBN: 9781855843790
    AuthorOlive Whicher
    Pub Date20/05/2013
    BindingPaperback
    Pages292
    Availability: In Stock

    Olive Whicher's groundbreaking book presents an accessible - non-mathematician's - approach to projective geometry. Profusely illustrated, and written with fire and intuitive genius, this work will be of interest to anyone wishing to cultivate the power of inner visualization in a realm of structural beauty. Whicher explores the concepts of polarity and movement in modern projective geometry as a discipline of thought that transcends the limited and rigid space and forms of Euclid, and the corresponding material forces conceived in classical mechanics. Rudolf Steiner underlined the importance of projective geometry as, 'a method of training the imaginative faculties of thinking, so that they become an instrument of cognition no less conscious and exact than mathematical reasoning'. This seminal approach allows for precise scientific understanding of the concept of creative fields of formative (or etheric) forces at work in nature - in plants, animals and in the human being.

    Write your own review
    • Only registered users can write reviews
    *
    *
    • Bad
    • Excellent
    *
    *
    *

    Olive Whicher's groundbreaking book presents an accessible - non-mathematician's - approach to projective geometry. Profusely illustrated, and written with fire and intuitive genius, this work will be of interest to anyone wishing to cultivate the power of inner visualization in a realm of structural beauty. Whicher explores the concepts of polarity and movement in modern projective geometry as a discipline of thought that transcends the limited and rigid space and forms of Euclid, and the corresponding material forces conceived in classical mechanics. Rudolf Steiner underlined the importance of projective geometry as, 'a method of training the imaginative faculties of thinking, so that they become an instrument of cognition no less conscious and exact than mathematical reasoning'. This seminal approach allows for precise scientific understanding of the concept of creative fields of formative (or etheric) forces at work in nature - in plants, animals and in the human being.